References#
S. V. Stehman and R. L. Czaplewski. Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sensing of Environment, 64:331–344, 1998. doi:10.1016/S0034-4257(98)00010-8.
P. Olofsson, G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, and M. A. Wulder. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148:42–57, 2014. doi:10.1016/j.rse.2014.02.015.
P. Olofsson, G. M. Foody, S. V. Stehman, and C. E. Woodcock. Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129:122–131, 2013. doi:10.1016/j.rse.2012.10.031.
FAO. Collect earth: land use and land cover assessment through augmented visual interpretation. 2016.
G. M. Foody. Valuing map validation: the need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecological Economics, 111:23–28, 2015.
Global Forest Observations Initiative. Integration of remote sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests. 2020. URL: https://www.reddcompass.org/mgd/resources/GFOI-MGD-3.1-en.pdf.
A. H. Strahler, L. Boschetti, G. M. Foody, M. A. Friedl, M. C. Hansen, M. Herold, P. Mayaux, J. T. Morisette, S. V. Stehman, and C. E. Woodcock. Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps. Technical Report GOFC-GOLD Report No. 25, GOFC-GOLD, 2006.
S. V. Stehman and G. M. Foody. Accuracy assessment. In T. A. Warner, D. M. Nellis, and G. M. Foody, editors, The SAGE Handbook of Remote Sensing, pages 297–309. SAGE Publications, 2009. doi:10.4135/9780857021052.n21.
S. V. Stehman. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. International Journal of Remote Sensing, 35(13):4923–4939, 2014. doi:10.1080/01431161.2014.930207.
Y. Finegold and A. Ortmann. Map Accuracy Assessment and Area Estimation: A Practical Guide. FAO, 2016.
S. V. Stehman and G. M. Foody. Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231:111199, 2019. doi:10.1016/j.rse.2019.05.018.
W. G. Cochran. Sampling Techniques. John Wiley & Sons, 3rd edition, 1977.
J. L. Van Genderen, B. F. Lock, and P. A. Vass. Remote sensing: statistical testing of thematic map accuracy. Remote Sensing of Environment, 7(1):3–14, 1978.
A. M. Hay. Sampling designs to test land-use map accuracy. Photogrammetric Engineering and Remote Sensing, 45(4):529–533, 1979.
S. V. Stehman and J. D. Wickham. Pixels, blocks of pixels, and polygons: choosing a spatial unit for thematic accuracy assessment. Remote Sensing of Environment, 115(12):3044–3055, 2011.
G. M. Foody. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239:111630, 2020.
R. G. Pontius Jr and M. Millones. Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15):4407–4429, 2011.
S. V. Stehman. Estimating area from an accuracy assessment error matrix. Remote Sensing of Environment, 132:202–211, 2013.
S. V. Stehman. Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change. Remote Sensing Letters, 3:111–120, 2012.
A. McMurray, T. Pearson, and F. Casarim. Guidance on Applying the Monte Carlo Approach to Uncertainty Analyses in Forestry and Greenhouse Gas Accounting. Winrock International, 2017.
G. Galindo, O. J. Espejo, J. C. Rubiano, L. K. Vergara, and E. Cabrera. Protocolo de procesamiento digital de imágenes para la cuantificación de la deforestación en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, version 2.0 edition, 2014.
R. Avtar, M. Navia, J. Sassen, and M. Fujii. Impacts of changes in mangrove ecosystems in the ba and rewa deltas, fiji using multi-temporal landsat data and social survey. Coastal Engineering Journal, 63(3):386–407, 2021. doi:10.1080/21664250.2021.1932332.
J. L. Awange and J. B. Kyalo Kiema. Maps in environmental monitoring. In Environmental Geoinformatics, pages 253–267. Springer, 2013. doi:10.1007/978-3-642-34085-7_19.
R. G. Congalton and K. Green. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, 3rd edition, 2019. doi:10.1201/9780429052729.
A. M. dos Santos, C. F. A. da Silva, A. P. Rudke, and D. de Oliveira Soares. Dynamics of active fire data and their relationship with fires in the areas of regularized indigenous lands in the southern amazon. Remote Sensing Applications: Society and Environment, 23:100570, 2021. doi:10.1016/j.rsase.2021.100570.
A. M. dos Santos, N. C. do Carmo, F. G. Nunes, L. A. de Aguiar, and C. F. A. da Silva. Digital image classification: a comparison of classic methods for land cover and land use mapping. Anuário do Instituto de Geociências, 45:1–10, 2022. doi:10.29327/aigeo.2022.47481.
J. E. Estes and D. W. Mooneyhan. Of maps and myths. Photogrammetric Engineering and Remote Sensing, 60:517–524, 1994.
D. Fernández Fernández. Modelado de la distribución de hábitats forestales en la reserva de la biosfera de muniellos: patrones espaciales y condicionantes ecológicos. Master's thesis, Universidad de Oviedo, 2022.
A. S. F. Filho, L. M. G. Fonseca, H. Bendini, and I. Del'Arco. Avaliação de índice de vizinhança para mapeamento de agricultura irrigada. In Anais do XX Simpósio Brasileiro do Sensoriamento Remoto. INPE, 2023.
G. M. Foody. Gis: the accuracy of spatial data revisited. Progress in Physical Geography, 25:389–398, 2001.
F. L. Hakim, I. Indarto, E. Hidayah, and B. E. Cahyono. Five decades of land use and land cover change in bedadung watershed: learning from landsat data. In AIP Conference Proceedings, volume 2583. AIP Publishing, 2023.
M. Irsyam, W. Khirstianto, and N. Diniyah. Pemetaan jenis tanaman menggunakan pendekatan machine-learning dan citra sentinel-2: studi kasus di lumajang, jawa timur, indonesia. In Seminar Nasional Teknik Sipil, volume 1, 273–285. 2023.
B. Jakimow, S. van der Linden, F. Thiel, D. Frantz, and P. Hostert. Visualizing and labeling dense multi-sensor earth observation time series: the eo time series viewer. Environmental Modelling & Software, 125:104631, 2020.
C. Kamusoko. Land cover classification accuracy assessment. In Optical and SAR Remote Sensing of Urban Areas: A Practical Guide, pages 105–118. Springer, 2021.
C. Kamusoko. Optical and SAR Remote Sensing of Urban Areas: A Practical Guide. Springer Nature, 2021.
D. R. Lightfoot and D. R. Butler. Recognition and assessment of error in geographic information systems. Photogrammetric Engineering and Remote Sensing, 53:1423–1430, 1987.
I. Mahrus, I. Indarto, K. Wheny, and K. Fahmi. Crop type mapping using machine learning-based approach and sentinel-2: study in lumajang, east java, indonesia. INMATEH - Agricultural Engineering, 2024.
D. H. Maling. Measurements from Maps: Principles and Methods of Cartometry. Elsevier, 2013.
M. Mandala, F. L. Hakim, I. Indarto, and F. A. Kurnianto. Land use and land cover change in east java, indonesia from 1972 to 2021: learning from landsat. Environmental Research, Engineering and Management, 80(3):57–69, 2024.
J. McKendry. The influence of map design on resource management decision making. Cartographica, 37:13–27, 2000. doi:10.3138/R516-107N-4X28-0504.
R. E. McRoberts. Satellite image-based maps: scientific inference or pretty pictures? Remote Sensing of Environment, 115:714–724, 2011.
J. D. Méndez-Quintero, C. O. Fonseca, M. A. Nero, C. F. F. Lobo, and S. M. C. Ribeiro. Quantifying land use change dynamics in agrotourism destinations: a case study from venda nova do imigrante, brazil. Geography, Environment, Sustainability, 16(2):121–131, 2023.
P. J. Mitchell, A.-L. Downie, and M. Diesing. How good is my map? a tool for semi-automated thematic mapping and spatially explicit confidence assessment. Environmental Modelling & Software, 108:111–122, 2018.
P. Olofsson, P. Arévalo, A. B. Espejo, C. Green, E. Lindquist, R. E. McRoberts, and M. J. Sanz. Mitigating the effects of omission errors on area and area change estimates. Remote Sensing of Environment, 236:1–9, 2020.
B. W. Petzold, C. von Baeckmann, J. Boike, A. E. Martin, G. Vieira, M. B. Heim, and D. Ehrich. Exposure of arctic coastal settlements to coastal erosion. 2024. Preprint.
S. M. Punalekar, C. Planque, R. M. Lucas, D. Evans, V. Correia, C. J. Owers, and S. Chognard. National scale mapping of larch plantations for wales using the sentinel-2 data archive. Forest Ecology and Management, 501:119679, 2021.
QGIS Development Team. QGIS Geographic Information System. QGIS Association, 2025.
M. Sakamoto, S. M. A. Ullah, and M. Tani. Land cover changes after the massive rohingya refugee influx in bangladesh: neo-classic unsupervised approach. Remote Sensing, 13(24):5056, 2021.
S. V. Stehman and P. Olofsson. Omission errors in large strata in stratified area estimation. In I. Jonckheere, R. Hamilton, J. M. Michel, and E. Donegan, editors, Good Practices in Sample-based Area Estimation. FAO, 2024.
M. W. Sujarwo, F. L. Hakim, and I. Indarto. Using landsat to track land use and land cover change from 1970 to 2020 in mayang watershed, east java. In AIP Conference Proceedings, volume 2583. AIP Publishing, 2023.
E. Y. Turpo Cayo, M. O. Borja, R. Espinoza-Villar, N. Moreno, R. Camargo, C. Almeida, and C. M. Souza Jr. Mapping three decades of changes in the tropical andean glaciers using landsat data processed in earth engine. Remote Sensing, 14(9):1974, 2022.
D. A. Umarhadi, W. Widyatmanti, P. Kumar, A. P. Yunus, K. M. Khedher, A. Kharrazi, and R. Avtar. Tropical peat subsidence rates are related to decadal lulc changes: insights from insar analysis. Science of the Total Environment, 816:151561, 2022.
V. Yordanov and M. A. Brovelli. Deforestation mapping using sentinel-1 and object-based random forest classification on google earth engine. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43:865–872, 2021.